First Semester B.E. Degree Examination, July/August 2022 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

If $y = a \cos(\log x) + b \sin(\log x)$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.

(06 Marks) (05 Marks)

Find the angle of intersection of the curves $r = \sin \theta + \cos \theta$ and $r = 2 \sin \theta$.

Show that the radius of curvature at any point of:

$$x = a(\theta + \sin \theta)$$
, $y = a(1 - \cos \theta)$ is $4a \cos (\theta/2)$.

(05 Marks)

Find the nth derivative of $\frac{x+1}{x-1} + e^{-2x} \cos^2 x$.

(06 Marks)

Find the pedal equation of $r^n = a^n \cos n\theta$.

(05 Marks)

Show that radius of curvature on the curve $y^2 = \frac{a^2(a-x)}{x}$ at (a, 0) is $\frac{a}{2}$.

(05 Marks)

Expand $log_e x$ in powers of (x - 1) upto fifth degree term.

(06 Marks)

b. If
$$u = \tan^{-1} \left[\frac{x^3 + y^3}{x - y} \right]$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$

(05 Marks)

c. If
$$u = x^2 + y^2 + z^2$$
, $v = xy + yz + zx$ and $w = x + y + z$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

(05 Marks)

OR

Evaluate $\lim_{x \to \frac{\pi}{4}} (\tan x)^{\tan 2x}$.

(06 Marks)

b. If Z = f(x, y) where $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$, prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial v}$.

c. If $V = (x^2 + y^2 + z^2)^{-1/2}$, prove that $V_{xx} + V_{yy} + V_{zz} = 0$.

(05 Marks)

a. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3 where t is the time. Find the Components of its velocity and acceleration at t = 1 in the direction $\hat{i} + \hat{j} + 3\hat{k}$. (06 Marks)

b. If
$$\vec{F} = \text{grad}(x^3y + y^3z + z^3x - x^2y^2z^2)$$
, find div \vec{F} and curl \vec{F} at $(1, 2, 3)$. (05 Marks)

For any scalar point function ϕ and a vector point function \overrightarrow{A} , show that $\operatorname{div}(\phi \overrightarrow{A}) = \phi(\operatorname{div} \overrightarrow{A}) + \operatorname{grad} \phi \cdot \overrightarrow{A}$.

6 a. If
$$\overrightarrow{R} = x \hat{i} + y \hat{j} + z \hat{k}$$
 and $|\overrightarrow{R}| = r$, show that $\nabla r^n = nr^{n-2} \overrightarrow{R}$. (06 Marks)

b. Show that for any scalar point function
$$\phi$$
, $\nabla_n X(\nabla \phi) = 0$. (05 Marks)

c. If
$$u = x^2 + y^2 + z^2$$
, $\vec{V} = x \hat{i} + y \hat{j} + z \hat{k}$, show that $div(u \vec{V}) = 5u$. (05 Marks)

Module-4

7 a. Obtain the reduction formula for $\int \sin^n dx$ (06 Marks)

b. Solve the differential equation : $(x^4 - 2xy^2 + y^4) dx - (2x^2y - 4xy^3 + \sin y) dy$. (05 Marks)

c. Find the orthogonal trajectories of the family of coaxial circles $x^2 + y^2 + 2\lambda x + c = 0$, λ (05 Marks)

OR

8 a. Evaluate
$$\int_{0}^{2a} \frac{x^3}{\sqrt{2ax - x^2}} dx$$
 (06 Marks)

b. Solve
$$x \frac{dy}{dx} + y = x^3 y^6$$
. (05 Marks)

c. A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of the air being 40°C. What will be the temperature of the body after 40 minutes from the original?

(05 Marks)

Module-5

9 a. Find the rank of the matrix:

b. Using Gauss Seidel method solve:

$$20x + y - 2z = 17$$

$$2x - 3y + 20z = 25$$

$$3x + 20y - z + 18 = 0$$

in three iterations with $(x_0, y_0, z_0) = (0, 0, 0)$. (05 Marks)

c. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form. (05 Marks)

OR

10 a. Solve the system of equations:

$$x + y + z = 9$$

 $2x - y + 2z = 15$
 $3x + 2y + z = 12$

by Gauss elimination method. (06 Marks)

b. Using Rayleigh's power method find the dominant eigen value of

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

in five iterations, choosing $X_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. (05 Marks)

c. Show that the transformation

$$y_1 = 2x_1 + x_2 + x_3$$

 $y_2 = x_1 + x_2 + 2x_3$
 $y_3 = x_1 - 2x_3$

is regular. Find the inverse transformation. , (05)